

ELIZADE UNIVERSITY, ILARA-MOKIN, NIGERIA

FACULTY: BASIC & APPLIED SCIENCES

DEPARTMENT: BIOLOGICAL SCIENCES

SECOND SEMESTER EXAMINATION

2020/2021 ACADEMIC SESSION

COURSE CODE: EMT 202	
COURSE TITLE: METHODS IN ENVIRONMENTAL ANALYSIS I COURSE UNIT: 3 UNITS	
DURATION: 2 HOURS	HOD's SIGNATURE
AME:	
MAT. No:	
INSTRUCTION: ANSWER ANY 2 OUESTIONS FROM EACH SECTION	*

ECTION A

Table of critical values for Rejection Quotient

Tubic of cities , wines for Rejection Quoties	110				
Number of observation	6	7	8	9	10
Q _{critic} (90 % confidence), Reject if Q _{exp} >	0.56	0.51	0.47	0.44	0.41

SECTION A

- 1a. During the calibration of a 10 mL pipette, a student obtained the following values in mL: 9.986, 9.973, 9.463, 9.990, 9.983, 9.980 and 9.988. From the given information, determine:
 - (i) if there is an outlier that should be rejected and hence, calculate the mean value.
 - (ii) the relative error of the mean in percentage.
 - (iii) the standard deviation and then write the result for volume of the pipette.
- b(i) State the supersaturation ratio. From it, which two conditions lead to a good precipitate?
 - (ii) Give two types of gravimetric method of analysis.

(20 Marks)

- 2a(i) Define sampling. Why is correct sampling very important in environmental analysis?
 - (ii) Give two importance of environmental analysis.
 - b(i) Explain nucleation.
 - (ii) State in order, three steps in the procedure of gravimetry by precipitation.
 - (iii) An ore is analysed for the manganese content by converting the manganese to Mn₃O₄ and weighing the Mn₃O₄. If a 2.53 g sample yields Mn₃O₄ of 0.238 g, calculate the gravimetric factor and hence, the % MnO₂ in the sample. (O = 15.9994, Mn = 54.938) (20 Marks)
- 3a(i) State two differences between indeterminate error and determinate error.
 - (ii) Give two types of systematic error based on source.
 - (iii) Write a short note on determination of blank reagent in analysis.
 - b. Define standard solution and name three apparatus for prepaing a standard solution.
 - c. A bottle of concentrated trioxonitrate (V) acid has a label stating: Specific gravity = 1.42, Percent Purity = 70 and Molecular mass = 63. From the information given, determine the:
 - (i) molarity of the acid;
 - (ii) volume of the stock solution needed to prepare 250 cm³ of 0.50 M solution. (20 Marks)

SECTION B

- 1. (a) Give 4 properties of primary standard
 - (b) Differentiate between the following:
 - (i) Arrhenius acid and base
 - (ii) Bronsted lowry acid and base
 - (iii) Lewis acid and base
- 2. (i) Explain the indicators involved in precipitation titration
 - (ii) What is the transition range for an indicator with an acid dissociation constant of 1.0 X 10 -5
- 3. (i) Give the indicator involve in complexometric titration
 - (ii) Calculate the potential of half equation

Cr₂O₇2- ----- 2Cr³⁺

Carried out at pH of 2, given $[Cr_2O_7^{2-}] = 10^{-3} \text{ M}; [Cr^{3+}] = 10^{-2}, [H+] = 10^{-2} \text{ and } E^0 Cr_2O_7^{2-} / Cr^{3+} = 1.33 \text{ V}$